Step of Proof: exists_over_and_r
12,41
postcript
pdf
Inference at
*
2
I
of proof for Lemma
exists
over
and
r
:
1.
T
: Type
2.
A
:
3.
B
:
T
4.
A
5.
x
:
T
6.
B
(
x
)
x
:
T
. (
A
&
B
(
x
))
latex
by ((With
x
(D 0))
CollapseTHEN ((Auto_aux (first_nat 1:n) ((first_nat 1:n),(first_nat 3:n
C
)) (first_tok :t) inil_term)))
latex
C
.
Definitions
t
T
,
P
&
Q
,
x
:
A
.
B
(
x
)
,
x
(
s
)
,
origin